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Small-Scale Structure of Space-Time and Dirac
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Connes’ noncommutative geometry is presented and the relevance of the Dirac
operator in the elucidation of the structure of space-time at the Planck length
is discussed.

1. INTRODUCTION

One outstanding problem in theoretical physics is the correct marriage
of quantum field theory and general relativity. Riemannian geometry pro-
vides the right framework for general relativity and for understanding the
large-scale structure of space-time. On the other hand, in quantum field
theory, the Standard Model has been quite successful in describing all of
the phenomenology associated with the elementary particles, consistent
with present-day experiments. The fundamental difference between these
two theories is that while in the Standard Model, Minkowskian space-time
is treated as a background, in general relativity, the metric of space-time
is itself a dynamical field. We have learned, however, from quantum field
theory that all dynamical objects exhibit a quantum behavior and we are
therefore led to conclude that space-time geometry, too, must exhibit a
quantum behavior. In the early days of quantum gravity, it was thought
that the natural way to achieve this was to quantize the metric of the
gravitational field by applying the perturbative techniques that were so
successful for the quantization of the other fields in nature. As we now
know, the resulting theories failed because they turned out to be nonrenor-
malizable and/or nonunitary. Thus the question remains as to the appropriate
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way of describing the quantum nature of space-time. From a mathematical
point of view, this question translates into the corresponding one of how
to build a diffeomorphic invariant formulation of the theory which would
thus provide a unifying picture of gravitation and the other fundamental
interactions in nature.

Present-day attempts to develop a mathematics that goes beyond pres-
ent quantum field theory involve a variety of approaches, such as topologi-
cal quantum field theory, dynamical triangulations, string theory and efforts
in this context to develop a nonperturbative formulation that could allow
us to reach Planck scale physics, noncommutative geometry, and loop
representations. The most popular is string theory (in its seemingly duality
related variants), which is based on the idea of using extended objects to
construct world sheets, thus removing points, which are the source of the
singularities, as essential structural objects of the manifold. Here gravitation
would appear as a classical limit of the theory. Some of the other approaches
are based on the premise that there is nothing wrong with points in a
manifold, but that the problem resides in the assumed validity of perturba-
tion theory for quantum gravity. This view has led to a whole line of
research intended to develop various techniques in order to construct a
nonperturbative quantum gravity theory. For a collection of work on some
of these different directions of research see, e.g., Rovelli and Smolin (1995).
Although none of these apparently conceptually different approaches and
their variants are near a final theory of grand unification, and probably no
single one of these directions will succeed in producing it, there appears
to be emerging a common denominator of noncommutativity in some of
their ingredients. All this seems to point to the fact that when considering
the problem of the coordinates below the Planck length, there is no good
reason to presume that the texture of space-time will still have a 4-dimen-
sional continuum.

There is a heuristic argument that points in this direction and displays
the interplay of quantum mechanics with special and general relativity: Heise-
nberg’s uncertainty principle gives nx np , ". Thus, a localization nx
implies an energy transfer , "c/nx and a corresponding inertial mass ma 5
"/(cnx). Because of the principle of correspondence,

ma 5 mg 5
"

cnx
(1)

and this gravitational mass generates in turn a gravitational field. Let us
assume that this field is centrally symmetric and given by the Schwarz-
schild metric



Small-Scale Structure of Space-Time and Dirac Operator 141

ds2 5 1c2 2
2km

r 2dt2 2 r 2(sin2 u df2 1 du2) 2
dr 2

1 2 2km/rc2 ,

k 5 6.67 3 1028 cm3

g sec2

At the Schwarzschild radius, the gravitational mass (1) yields

r 5
2km
c2 5

2k"

c3nx
⇒ nx ? r 5

2k"

c3 , l2
P 5 (1.6 3 10233)2 cm2

The Planck length is a lower limit to the possible precision of measurement of
position, and shorter distances do not appear to have an operational meaning. If
so, then it would make sense that we need to extended the phase-space
noncommutativity of quantum mechanics to a noncommutativity of space-
time in order to quantize gravity. A possible way to implement this idea is
through a new paradigm of geometric space that would allow us to incorporate
into our formalism completely different small-scale structures from those to
which we are usually accustomed. One such paradigm is the noncommutative
geometry invented by Alain Connes, which has the following features:

1. It includes ordinary Riemannian space.
2. It treats discrete spaces on the same footing as the continuum, thus

allowing for a mixture of the two.
3. It allows the possibility of noncommuting coordinates.
4. It is quite different from the geometry arising in string theory, but

is not incompatible with the latter.

In order for this paradigm to deserve the name of geometry, it is necessary
to consider a new calculus, the so-called spectral calculus, based on operators
in Hilbert space and the use of the tools of spectral analysis. This will be
the subject matter Sections 2 to 4; Section 5 will be devoted to a discussion
of some of the basic ideas behind spectral gravity, exemplified by an applica-
tion of the general methodology to the simplest noncommutative case of the
Einstein–Yang–Mills system with one gauge field. Section 6 is devoted to
a discussion of some of the remaining basic problems together with possible
future approaches to the issues here presented.

I believe that the solution of the problem of the unification of gravitation
and the rest of physics will most probably involve a symbiosis of many of
the different present directions of research. I also believe that noncommutative
geometry will play an important role in whatever the ultimate theory will
be. Thus, without the deliberate intent of dismissing other theories and even
of other approaches within noncommutative geometry, I devote the limited
space available here to an overview of Connes’ noncommutative geometry,
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including specifically the material that I thought a nonspecialized physicist
would find illustrative and motivating and would also require in order to
further read the research papers that have been written on spectral gravity.
It is interesting, however, that even with an elementary use of the ideas of
noncommutative geometry, one obtains many remarkable results, such as the
noncommutative origin of the gauge fields. I hope this will justify the content
and form of the presentation, as well as the omission of other approaches
associated with this quickly developing field. For a discussion of other non-
commutative versions of differential geometry see Dubois-Violette (1999) as
well as the work of Woronowicz (1987) on differential calculus based on
bicovariant bimodules over quantum groups.

The main reference is the treatise of Connes (1994). There are other
works of a more introductory nature, such as the lecture notes by Kastler
(1998), Schücker (1997), Landi (1997), and Madore (1998).

2. QUANTIZED CALCULUS

At scales below the Planck length, space-time may no longer have the
structure of a 4-dimensional continuum, hence the basic idea of noncommuta-
tive geometry, of switching from manifolds to algebras where, in general,
there is no remanent analogue of space whatsoever. The starting point of
Connes, (1994) noncommutative geometry consists in fixing a pair (*, F ),
where * is an infinite-dimensional separable Hilbert space and F is an
operator acting on * such that F 5 F*, F 2 5 1. Giving F is the same as
giving the decomposition of * into a direct sum of the two infinite-dimen-
sional orthogonal closed subspaces {j P *; Fj 5 6j}. The classical differen-
tial and integral calculus is then replaced according to the scheme in Table I.

The transitions implied by the first, second, and fifth entries of the table
are entirely similar to those required for going from classical to quantum

Table I.

Classical Quantum

Complex variable Operator in *
Real variable Self-adjoint operator in *
Infinitesimal Compact operator in *
Infinitesimal of order a Compact operator in * whose characteristic values

mn satisfy mn 5 O(n2a), n → `
Differential of real or complex da 5 [F, a] 5 Fa 2 aF

variable
Integral of infinitesimal of Dixmier trace

order 1
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mechanics. This, in turn, implies the fundamental idea of incorporating quan-
tum mechanics into the construction of the geometry from the start, rather
than quantizing the geometry a posteriori. Also note that in this framework
the condition

∀e . 0, ∃ a finite-dimensional subspace E , *: |TE'
| , e

which characterizes compact operators T P _(*), can be regarded in a
sense as a concept of smallness and thus these operators play the role of
infinitesimals. [We designate the bilateral ideal of compact operators on *
by _(*).]

The size of the infinitesimal T is governed by the rate of decay of the
sequence {mn(T )} as n → `, where mn are the eigenvalues of .T. 5 !T*T.
Therefore infinitesimals of order a P R+ are the two-sided ideals whose
elements satisfy the condition

∃C , `: mn(T ) # Cn2a, ∀n $ 1

Consider the fifth entry in the scheme of Table I, which is the operator-
theoretic notion for the differential

da 5 [F, a] (2)

where a P ! (an involutive algebra of operators in the Hilbert space). Since
the left side of this equation is to be interpreted as an infinitesimal, we need
first to specify the required properties of the representation of ! in the pair
(*, F ) such that [F, a] P _, ∀a P !. Such a representation is called a
Fredholm module and is given by the following definition.

Definition 2.1. An odd Fredholm module over ! is given by:
1. An involutive representation p of ! in *.
2. An F 5 F*, F 2 5 1, such that [F, p(a)] is compact for any a P !.

Definition 2.2. An even Fredholm module is given by (*, F ) as above
plus a Z2 grading e 5 e*, e2 5 1, of * such that

ep(a) 5 p(a)e, ∀a P !, eF 5 2Fe

From here on, when there is no risk of confusion, we shall use for
brevity the symbol a to mean the representation p(a) of an element of the
C*-algebra !. Finally, we want an ‘integral’ which neglects all infinitesimals
of order .1. In general, however, an infinitesimal of order 1 is not in the
domain of the trace (the trace diverges as ln N ) and, in addition, the trace
of higher order infinitesimals does not vanish. The Dixmier trace is a scale-
invariant procedure designed to extract the coefficient of the divergence, thus
overcoming these two problems (Dixmier, 1964, 1966),
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Trv(T ) 5 lim
v

5
1

ln N o
N21

n50
mn(T ), ∀T $ 0 and T P +(1,`)

(the ideal of compact operators which are infinitesimal of order 1). Here
limv is a homothetically invariant limit (Dixmier has proven that there exist
infinitely many of them) such that the Dixmier trace acquires the follow-
ing properties:

Trv (lT1 1 T2) 5 lTrv (T1) 1 Trv (T2), ∀l P C

Trv (ST ) 5 Trv (TS) for any bouded S

Trv (T ) $ 0 whenever T $ 0

Trv (T ) 5 0 whenever the order of T is .1

As it turns out, for many problems of interest in physics where T is pseudodif-
ferential and measurable, such as is the case for gauge theories and gravitation,
the Dixmier trace does not depend on the limiting procedure v and this
common value is the appropriate integral for T in the new calculus. Moreover,
in such cases, the Dixmier trace coincides with the Wodzicki residue (Wod-
zicki, 1984), and we shall use this fact in our calculations later.

3. METRIC IN NONCOMMUTATIVE GEOMETRY

On Riemannian manifolds, the metric is given by the geodesic distance

dg (x, y) 5 infg {length of paths g from x to y} (3)

We will show how Riemannian geometries can be algebraized in order to
arrive at a formulation which can be extended to noncommutative spaces. If
! is the algebra of C`(M ) functions over M, the above equation can be
dualized in the sense of the Gel’fand–Naimark theorem. Let ds be the line
element in Riemannian geometry and

d(x, y) 5 sup{.f(x) 2 f( y).; f P !, ZZdf
dsZZ # 1} (4)

To show that (3) and (4) agree for M a compact Riemannian space, recall
that a function is Lipschitz if

.f(x) 2 f( y). # Cdg(x, y) ∀x, y P M (5)

|f|Lip 5 C 5 sup
.f(x) 2 f( y).

dg (x, y)
(6)

The algebra of Lipschitz functions is norm-dense in the algebra of continuous
functions on M, so
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ZZdf
dsZZ 5 |f|Lip

The condition |df/ds| # 1 implies that

dg(x, y) $ sup .f(x) 2 f( y). 5 d(x, y) (7)

To invert the inequality, fix y and consider the function fg,y( p) 5 dg( p, y).
Then |dfg,y /ds| # 1, and from (4),

d(x, y) $ .fg,y(x) 2 fg,y( y). 5 .dg(x, y) 2 dg( y, y).

5 dg(x, y) (8)

From (7) and (8), we get

dg(x, y) 5 d(x, y)

so (4) does in fact yield the geodesic distance between any two points. To
measure distances in a possibly noncommutative space X, we generalize (4)
by specifying a metric structure on X. We thus define a “unit of length” by
an operator of the form

G 5 o
q

1
(dxm)* gmn (dxn)

where xm are elements of !, dxm 5 [F, xm], and g 5 gmn, m, n 5 1, . . . , q,
is a positive element of the matrix algebra Mq(!). Note that G P _ and that
it is a positive “infinitesimal” by construction. We can therefore think of its
positive square root as the line element of Riemannian geometry, i.e.,

G1/2 5 ds (9)

Replace the points x, y P X by the pure states f, x on the C*-algebra closure
of !, and use the evaluation map by the Gel’fand–Naimark theorem,

f(a) 5 a(x), x(a) 5 a( y), ∀a P ! (10)

together with the quantum-theoretic expression for the dx 5 [F, x]. With the
additional assumption that G commutes with F so that dG 5 0 (thus avoiding
operator ordering ambiguities), we can rewrite the formula (4) as

d(f, x) 5 sup{.f(a) 2 x(a).;a P !, ZZF F
G1/2 , aGZZ # 1} (11)

The following operator on * is self-adjoint:
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D :5
F

G1/2 5 F(ds)21 (12)

We can then reformulate (11) as

d(f, x) 5 sup{.f(a) 2 x(a).;a P !, |[D, a]| # 1}

This will be then the expression for measuring distances in the spectrum of
! for any pair f, x of states on ! (commutative or not). By squaring the
defining equation (12) for the operator D and making use of the properties
of F, we get

D2 5 FG21/2FG21/2 5 F 2G21 5 G21, D 5 F.D., .D. 5 G21/2

(13)

Hence F is by construction the sign of D, and since G is also given in terms
of D, the information on the metric structure of our Fredholm module is
contained in the self-adjoint unbounded operator D on *. Therefore it turns
out more economical to take as our basic data the triple (!, *, D).

4. SPECTRAL GEOMETRY

Definition 4.1. A spectral triple (!, *, D) is given by an involutive
algebra of operators ! on a Hilbert space * and a self-adjoint operator
D 5 D* on * such that:

a. The resolvent (D 2 l)21, l ¸ R, of D is compact.
b. The commutators [D, a] are bounded ∀a P ! (a is then said to

be Lipschitz).

We reformulate the quantized calculus discussed in Section 2 in terms
of the triple (!, *, D). The triple is said to be even if there is a Z2 grading
of *, namely an operator e on * with e 5 e*, e2 5 1, such that

eD 1 De 5 0, ea 2 ae 5 0, ∀a P !

If such a grading does not exist, the triple is said to be odd. In general, one
could ask that condition b should be satisfied only for a dense subalgebra of !.

Proposition 4.1. Given a compact operator T on *, its spectrum s(T )
is a discrete set having no limit points except perhaps l 5 0. Furthermore,
any nonzero l P s(T ) is an eigenvalue of finite multiplicity.

Because of this, the assumptions in Definition 4.1 of compactness of
(D 2 l)21 imply that its eigenvalues mn((D 2 l)21) → 0 as n → `. Hence
mn(.D.) → ` as n → `.
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4.1. Distance and Integral for a Spectral Triple

Given a spectral triple (!, *, D), where ! may be in general a noncom-
mutative algebra, we showed at the end of Section 3 that the natural distance
function of the space 6(!) of states on the C*-algebra ! was given by

d(f, x) 5 sup
aP!

{.f(a) 2 x(a).; |[D, a]| # 1}, ∀f, x P 6(!) (14)

Now, in order to define the analogue of the classical measure integral, and
recalling the discussion of infinitesimals in Section 2, we use the follow-
ing definition.

Definition 4.1.1. We say that a spectral triple (!, *, D) is of dimension
n . 0 (or n summable) if .D.21 is an infinitesimal of order 1/n, i.e.,

∃ C , `: mm (.D.21) # Cm21/n, ∀m $ 1 (15)

where mm are the eigenvalues of .D.21 P _(*). For such an n-dimensional
spectral triple, the integral of any a P ! is defined by

# a 5
1
C

Trv(a.D.2n) (16)

Note that here mm(.D.2n) # Cm21, so .D.2n P +(1,`), which in turn
implies that a.D.2n P +(1,`). Also note from (15) that the normalization
constant in (16) is determined by the behavior of the characteristic values of
.D.2n. If .D.2n is measurable, then the Dixmier trace will be independent of
limv and could be computed by the local formula for the Wodzicki residue.
To make the integral (16) a nonnegative (normalized) trace on !, we need
to introduce the concept of tameness of !, which implies imposing the
requirements

# ab 5 # ba, ∀a, b P !, #a* a $ 0, ∀a P !

A particular example of a spectral triple is the so-called canonical triple,
where the operator D is the Dirac operator and ! is the commutative algebra
of smooth functions on a Riemmanian manifold. We shall discuss this case
next, both because it serves to exemplify some of the concepts in the above
abstract construction, and also because we shall be using this canonical triple
in our discussion of spectral gravity in the last part of this presentation.

4.2. The Canonical Triple over a Manifold

Let (M, g) be a closed n-dimensional Riemannian spin manifold. We
define the canonical spectral triple (!, *, D) as follows:
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1. ! 5 C`(M ), the algebra of complex-valued smooth functions on M.
2. * 5 L2 (M, S), the Hilbert space of square-integrable sections of

the irreducible spinor bundle over M, with rank 2[n/2]. The scalar
product in L2(M, S) is the natural one in C[n/2], and the elements of
the algebra ! act as multiplicative operators on *.

3. D is the Dirac operator of a Clifford connection.

Consider the algebra morphism g: G(M, C(M )) → @(*), where C(M )
is the Clifford bundle over M whose fiber at x P M is the complexified
Clifford algebra and G(M, C(M )) is the module of sections. We define D 5
g + ¹, where ¹ is the covariant derivative in the spinor bundle, compatible
with the Levi-Civita connection, ¹ 5 ¹m dxm, g(dxm) 5: gm(x), D 5 gm ¹m.
Let la be an arbitrary basis for the Dirac spinors c P 64(M), so that c(x) 5
ca(x)la. Let m denote the symplectic spinor product. From the properties of
the covariant derivative we get (Luehr and Rosenbaum, 1974)

¹mc(x) 5 (mca(x) 1 cb(x)La
mb)la, La

mb 5 lam¹mlb (17)

For the canonical triple. (!, *, D) over M, it follows from the Gel’fand–
Naimark theorem that the space M is the structure space !̂ of the norm
closure ! of the pointwise convergence on a commutative C*-algebra with
unit !, namely the space of equivalent classes of irreducible representations
of !. Moreover, since ! is Abelian, every irreducible representation is one-
dimensional, so !̂ is therefore a *-linear functional f : ! → C which is
multiplicative: f(ab) 5 f(a)f(b) for any a, b P !. It also follows that f(1) 5
1, ∀f P !̂. Thus, the space !̂ is the space of characters of !. The space
!̂ is made into a topological space (the Gel’fand space of !) by endowing
it with the Gel’fand topology of pointwise convergence on !, and since the
algebra ! has a unit, !̂ is a compact Hausdorff space. From (14), we have
that the natural distance for M is given by

d(fx , fy) 5 sup
aP!

{.fx(a) 2 fy(a).; |[D, a]| # 1}; ∀fx , fy P !̂

5 sup
aP!

{.a(x) 2 a( y).; |[D, a]| # 1}

The commutator [D, a] is a multiplicative operator since [D, a]c 5 (gmma)c 5
g(da)c, so |[D, a]| 5 |g(da)|. This, together with the fact that [D, a] is
bounded iff a is almost everywhere equal to a Lipschitz function f [cf (5)],
recovers the geodesic distance given by (4).

We show that the integration given by (16) yields the usual Riemann
measure on M,
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#
M

a 5 c(n) Trv(a.D.2n), c(n) 5 2(n2[n/2]21) npn/2G 1n
22 , ∀a P !

Locally, the Dirac operator can be written as D 5 g(dxm)m 1 lower order
terms. Thus, D is elliptic with principal symbol (Taylor, 1981) sD(j) 5
g(j), g(j)2 5 2|j|212[n/2], or g(j)(2g(j)/|j|2) 5 12[n/2], (sD(j))21 5 2g(j)/|j|2.
Consequently, .D.2n is a pseudodifferential of order 2n. But by Connes’
theorem, which relates the Dixmier trace to the Wodzicki residue (Wodzicki,
1984; Manin, 1979; Guillemin, 1985),

Trv(T ) 5 ResW(T ) 5:
1

n(2p)n #
S,M

TrE s2n(T ) dm (18)

where S,M 5 (the unit cosphere) 5 {(x, j) P T,M: |j| 5 1} , T,M, with
measure dm 5 dx dj, and TrE denotes the matrix trace over the ‘internal
indices’. Equation (18) becomes

Trv(a.D.2n) 5 Trv(a(D,D)2n/2) 5 Trv (a(D2)2n/2) 5 ResW(a(D2)2n/2)

5
1

n(2p)n #
S,M

Tr (as2n(D2)2n/2) dx dj

5
1

n(2p)n #
S,M

Tr (a|j|2n12[n/2])dx dj

5
2[n/2]

n(2p)n #
Sn21

dj #
M

a(x) dx

since on the cosphere bundle |j| 5 1. But

#
Sn21

j 5
2pn/2

G(n/2)

so

Trv(a.D.2n) 5
p2n/2 2([n/2]112n)

nG(n/2) #
M

a(x) dx n

4.3. Real Structure on a Spectral Triple

This notion (Connes, 1995) is essential in order to introduce the concept
of Poincaré duality, and may be thought of as a generalized charge conjugation
operator which allows one to keep track of the real structure on * and plays
a crucial role in the derivation of the Lagrangians for gauge fields, as we
shall see in Section 5.
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Definition 4.3.1. Let (!, *, D) be an even spectral triple. A real structure
for a 4-dimensional space is an antilinear isometry J in * such that

J, 5 J21 5 2J, J2 5 21, JD 5 DJ, Je 5 eJ (19)

[a, bo] 5 0, bo 5 Jb,J, for any a, b P ! (20)

[[D, a], bo] 5 0 (21)

Condition (21) may be seen to mean that D is a “generalized differential
operator” of order 1. From condition (20) and the Jacobi identity, one can
show that (21) is equivalent to [[D, bo], a] 5 0 for any a, b P !. Condition
(20) also turns * into a bimodule over !. The bimodule structure is given by

ajb 5: aJb,J,j; a, b P ! (22)

This bimodule structure follows from the fact that the existence of a J
satisfying (20) implies that

aJb, J, j 5 Jb, J, aj

Applying (22) to both sides of this equation results in

aJb, J, j 5 ajb 5 Jb, J, aj 5 ajb

which shows the consistency of the definition (22). Thus, if a P ! acts
on * as a left multiplication operator, then Ja, J, is the corresponding
right action.

Observe that for commutative algebras these two actions can be identified
and one simply writes a 5 Ja,J,. Under these circumstances, (21) becomes
[[D, a], b] 5 0, which indeed implies that D is a differential operator of
order 1. Furthermore, for a Riemannian spin manifold, the antilinear isometry
J is given by Jc 5 Cc, ∀c P *, where C is the charge conjugation operator.

4.4. Product of Two Real Spectral Triples

If we are given two spectral triples (!1, *1, D1, J1,) and (!2, *2, D2,
J2), where the first one is taken to be even with Z2 grading e1 on *, the
product triple is (!, *, D, J ) with

! 5 !1 ^ !2, * 5 *1 ^ *2,

D 5 D1 ^ 1 1 e1 ^ D2, J 5 J1 ^ J2

The dimension of the product triple is the sum of the dimensions of the first
and second triples. Also, as expected, two triples are equivalent if ∃U: *1 →
*2 such that Up1(a)U* 5 p2(a) for any a P !1, UD1U* 5 D2, Ue1U* 5
e2, and UJ1U* 5 J2, where U is unitary.
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5. SPECTRAL GRAVITY

Our presentation so far contains the bare bones of Connes’ program for
noncommutative geometry. Nothing was said about the construction of the
higher order calculus starting from the infinitesimals [D, a]. This would be
basic for gauge theories. Notwithstanding these omissions, the material cov-
ered is sufficient to consider a novel approach for studying the coupling of
gravitation with gauge fields and fermions, known as spectral gravity. In this
section we shall concentrate on a toy model for the bosonic sector of a GUT.

To describe the dynamics of gravitation coupled to gauge degrees of
freedom, Chamseddine and Connes (1996) propose the ‘purely geometric
action’

SB(D, A) 5 Tr*1x1D2
A

L222 (23)

where DA is related to the Dirac operator in a way to be discussed below,
Tr* denotes the usual trace in the Hilbert space, L is a “cutoff” parameter,
and x is a suitable function which cuts off all eigenvalues of D2

A larger than
L2. The motivation for proposing such an action, which depends solely on
the spectrum of the self-adjoint operator DA , resides in a new interpretation
(Connes, 1996) of the gauge degrees of freedom as the inner fluctuations of
a noncommutative geometry. To account for these fluctuations, the operator
D, which gives the ‘external geometry’, is replaced by DA 5 D 1 A 1 JAJ*,
where A is the gauge potential and J is the real structure antilinear operator
discussed above. To understand this important observation, recall first that
if M is a smooth (paracompact) manifold, the group Diff(M ) is isomorphic
to the group (under map composition) Aut(C`(M )) of *-preserving automor-
phisms of the algebra C`(M ). Indeed, let a P Aut(C`(M )) be an invertible
map from C` (M ) into itself such that a( fg) 5 a( f )a(g) and a( f*) 5 (a( f ))*
for any f, g P C`(M ), and let w P Diff(M ) be such that

C { f(x) 5 f 8(x8), x8 5 w + x, f 8(x8) 5 f + w21(x8) ⇒ f 8 5 f + w21

Then the relation between w and the corresponding automorphism aw is given
via the pullback aw( f )(x) 5 f + w21(x), ∀f P C`(M ), x P M. If ! is a unital
noncommutative algebra, we define the group Aut(!) exactly in the same
way as above, together with the condition b(1) 5 1 for any b P Aut(!).
Let u P 8(!) 5 {u P !; uu* 5 u*u 5 1}. Then an inner automorphism
au P Aut(!) is given by

au(a) 5 uau*, ∀a P !

It follows that au* + au 5 au + au* 5 1Aut(!) for any u P 8(!), and au1 +
au,2 5 au1u2, so Inn(!) # Aut(!) is a normal subgroup. Note also that since
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b is *-preserving, b(u)(b(u))* 5 b(u)(b(u*) 5 b(uu*) 5 b(1) 5 1 and, in
analogy, one shows also that (b(u))*b(u) 5 1. Thus, b(u) P 8(!), so any
automorphism will preserve the group of unitaries in !. Moreover,

ab(u)(a) 5 b(u)ab(u*) 5 b(u)b(b21(a))b(u*)

5 b(ub21(a)u*) 5 (b + au + b21)(a)

so ab(u) 5 b + au + b21 P Inn(!), ∀b P Aut(!) b u P Inn(!) Denoting Out
(!) 5: Aut(!)/Inn(!), we get the following short exact sequence of groups:

1Aut(!) → Inn(!) →s Aut(!) →r Out(!) → 1Aut(!) (24)

If ! is commutative [e.g., ! 5 C`(M )], then au(a) 5 uau* 5 auu* 5 a,
∀a P !; all inner automorphisms are then trivial and Aut(!) [ Out(!) .
Diff(M ). The above argument leads to the previously announced interpretation
that Inn(!) will give ‘internal’ gauge degrees of freedom and Out(!) will
give ‘external’ diffeomorphisms’. Furthermore, the gauge degrees of freedom
occur as a consequence of the noncommutativity of the geometry. To prove
this, note first that given an irreducible representation p of ! on *, an inner
automorphism au P Inn(!) on the real triple (!, *, D, J ) will produce a
new representation pu 5: p + au. It can be shown that the triples (!, *, D,
J ) and (!, U*, Du 5 D 1 u[D, u*] 1 Ju[D, u*]J, 2J ) are equivalent
through au , with the intertwinner unitary given by

U 5 uJuJ* (25)

The proof is straightforward and is based on repeated use of (19) and (20),

UJU* 5 2J (26)

Up(a)U* 5 up(a)u* 5 p + au (27)

UDU* 5 D 1 u[D, u*] 1 Ju[D, u*]J* :5 Du (28)

Combining (26)–(28), we arrive at the desired result. n

We thus have Connes’ beautiful interpretation that the operator Du can
be seen as a consequence of the perturbation of the ‘geometry’ given by D
by the inner (gauge) degrees of freedom given by the potential A 5 u[D, u*].

Consider a general internal perturbation of the geometry expressed by

DA 5 D 1 A 1 JAJ* (29)

where A is an arbitrary Hermitian gauge potential operator, A* 5 A, of
the form
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A 5 o
j

aj [D, bj], aj , bj P ! (30)

This will then be the generalized Dirac operator to be used in the right-hand
side of the spectral action given in (23). However, before considering the
details of such an action, we shall first show that it is invariant under inner
automorphisms, i.e., that DAu 5 UDAU*, where U is the unitary operator
given by (25). This follows immediately by observing first that

UDAU* 5 U(D 1 A 1 JAJ*)U* (31)

5 D 1 u[D, u*] 1 Ju[D, u*]J* 1 UAU* 1 UJAJ*U* [by (28)]

Moreover, recalling in addition (30), we have

[A, Ju*J*] 5 o
j

[aj [D, bj], Ju*J*] 5 0 [by (21)]

and

UAU* 5 uJuJ*AJu*J*u*

5 uJuJ*Ju*J*Au* 5 uAu* (32)

and, by repetitive application of (20), we also get

UJAJ*U* 5 JuAu*J* (33)

Inserting (32) and (33) into (31) results in

UDA U* 5 Du 1 uAu* 1 JuAu*J* 5 Du 1 Au 1 JAuJ* 5 DAu

where Au 5: uAu*. Thus, under inner automorphisms,

DA → DAu 5 UDAU* ⇒ D2
Au 5 UDAU*UDAU* 5 UD2

AU*

Tr(UD2
AU*) 5 Tr(D2

A)

so (23) is indeed (gauge) automorphism-invariant. n

For a commutative algebra, the general internal perturbation of the
geometry given by (29) does in fact vanish. To this end, recall (see Section
4.3) that for a commutative algebra, right and left actions on * as a bimodule
can be identified, that is, b 5 Jb*J*. Consequently,

J[D, bj]J* 5 JDbjJ* 2 JbjDJ* 5 JDJ* Jbj J* 2 JbjJ* JDJ*

5 DJbjJ* 2 JbjJ*D 5 [D, JbjJ*]

5 [D, b*j ] [by (19)]
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JAJ* 5 J o
j

aj[D, bj]J* 5 a*j o
j

[D, b*j ] 5 [from (21)]

5 o
j

[D, b*j ]a*j 5 21oj
aj[D, bj]2*

5 2A* 5 2A

Hence A 1 JAJ* 5 A 2 A 5 0, and the ‘internal perturbation’ 5 0.
In the case of gauge theories over commutative algebras, one constructs

connections on a principal fiber bundle where the structure group is a Lie
group G. The particle fields are then sections of the associated vector bundle
with fibers in *. We thus have the following short exact sequence, where
Aut(P) is the group of automorphisms on P, namely the diffeomorphisms f :
P → P such that f( pg) 5 f( p)g, ∀g P G, p P P, and GA(P) is the gauge group:

1 → GA(P) → Aut(P) → Diff(M ) → 1

This sequence is remarkably similar to the one in (24), which suggests the
following prescription for constructing spectral gauge theories:

1. Look for an algebra ! such that Inn(!) . GA(P).
2. Construct a suitable spectral triple ‘over’ !.
3. Compute the spectral action (23).

The result of applying such a procedure would be a gauge theory of the
group G coupled with gravity induced by the diffeomorphism group Out(!).

We end these remarks with comments on the problem of spectral invari-
ance versus diffeomorphism invariance. If we denote by spec(M, D) the
spectrum of the Dirac operator with each eigenvalue repeated according to
its multiplicity, then two manifolds M and M 8 are called isospectral if spec(M,
D) 5 spec(M 8, D). However, it is well known that there are manifolds which
are isospectral without being isometric. Thus, spectral invariance is stronger
than the usual diffeomorphic invariance and the eigenvalues of the Dirac
operator cannot be used to distinguish among such manifolds (“one cannot
hear the ‘shape’ of the drum”) (Kac, 1996; Milnor, 1964).

There seems to be missing a paradigm that would allow us to distinguish
among these manifolds; would it come from physics itself?

5.1. The Spectral Action for the Einstein–Yang–Mills System

The simplest noncommutative modification of a manifold M consists in
a product of two spectral triples, one of which is the canonical triple discussed
in the previous section and the other of which is associated with an N-
dimensional matrix algebra MN(C). The spectral triple in which we are inter-
ested is then given by
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! 5 C`(M ) ^ MN(C), * 5L2(S, M ) ^ MN(C) (34)

DA 5 gm(¹m ^ 1N 2
ig0

2
14 ^ Ai

mT i)

where A P MN(C) is a Hermitian matrix and T i are the anti-Hermitian
generators of the Lie algebra associated with the elements of a matrix group
in MN(C). Making use of (17), we obtain the Lichnerowicz formula for the
generalized Dirac operator DA in the canonical decomposition:

D2
A 5D2 ^ 1N 1 E, (35)

where

E 5
1
4

R14 ^ 1N 1
i
8
g0 [gm, gn] m Ai

n ^ T i (36)

D2 5 nS 1 1–4 R, nS 5 2gmn(¹m ¹n 2 Gr
mn ¹r),

where nS is the Laplace–Beltrami operator associated to the spinor
connection:

5.1.1. The Heat Kernel Expansion (Gilkey, 1984; Kalau and Walze, 1993)

Let P 5 (DA /L)2, where L is of the order of the inverse of the Planck
length (1019 GeV). Using the functional Laplace transformation x(P) 5
*`

0 exp(2tP)r(t) dt, we have that

Tr(x(P)) 5 #
`

0

Tr(exp (2tP)) r(t) dt (37)

Since we are assuming that M is compact, then P, which is positive, will
have positive discrete eingenvalues and we can write Pcn 5 mncn , mn $ 0.
The “heat kernel”

G(x, y, t) 5 o
n

exp (2mnt)cn (x) cn(y) (38)

is a solution to the heat equation (P 1 t)G(x, y, t) 5 0. But from (38) and
the completeness of the eigenfunctions, we get

Tr exp(2tP) 5 #
M

!g(x) G(x, x, t) d 4x

Using the asymptotic expansion for the kernel G(x, x, t), one finds that

G(x, x, t) 5 o
`

j50
L422jt j22a2j(x, P) (39)
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#
M

a2j (x, P)!g(x) d 4xo
`

j50
L422jtj22

Tr exp(2tP) 5 \
a2j (P)

(40)

Substituting this expression into (37) yields

Tr(x(P)) 5 o
`

j50
L422j a2j(P) #

`

0

t j22 r(t) dt (41)

Note also that

#
`

0

ux(u) du 5 #
`

0

r(t) 1#
`

0

exp (2tu) u du2 dt

5 #
`

0

t22 r(t) dt 5: f0 (42)

#
`

0

x(u) du 5 #
`

0

t21 r(t) dt 5: f2 (43)

(21)kxk(0) 5 #
`

0

tk r(t) dt 5: f2(k12), k $ 0

Taking x as a smoothened at u 5 1 characteristic functional of the unit
interval, so that

x(u) 5 1, u # 1; x(u) 5 0, u . 1; x(k) 5 0, k $ 0

we can integrate (42)–(43) to get f0 5 1–2 , f2 5 1, f4 5 1. Thus, (41) becomes

SB(D, A) 5 [1–2 L4a0(P) 1 L2a2(P) 1 a4(P)] (44)

The scalar invariants a2k can be read off from the work of Gilkey (1984)
and de Witt (1965)

(4p)2a0(P) 5 #
M

!detg d 4x Tr(14 ^ 1N) 5 N #
M

!detg d 4x

(4p)2a2(P) 5 #
M

!detg Tr12
R
6

14 ^ 1N 1 E2 d 4x (45)

(4p)2a4(P) 5
1

360 #
M

!detg Tr[(212R;m
;m 1 5R2 2 2RmnRmn

1 2 Rmnsr Rmnsr)14 ^ 1N
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2 60RE 1 180E 2 1 60E;m
;m 1 30VmnVmn] d 4x (46)

Vmn 5
1
8

Rab
mn [ga, gb] ^ 1N 2

i
2

14 ^ g0 mAi
n ^ T i (47)

For our final result, we only need to insert (36) and (47) into (45) and (46),
recall that the Ti are traceless, make use of the Gauss–Bonnet topological
invariant

11
2

emnrs Rab
mn2 11

2
eablt Rlt

rs2 5 RmnsrRmnsr 2 4RmnRmn 1 R2

and substitute the derived expressions for the a2j into (44) to get

48p2

N
SB(D, A) 5 6L4 #

M

d 4x !g(x) 1 L2 #
M

d 4x!g(x)R

1 #
M

d 4x!g(x) 12
3
20

Cmnsr Cmnsr 1
1
10

R;m
;m

1
11
120 11

2
emnrs Rab

mn2 11
2

eablt Rlt
rs2

1
g2

0

N
gms gnr mAi

n sAi
r2 (48)

where Cmnsr is the Weyl tensor

Cmnsr 5 Rmnsr 2 (gm.sRn.r] 2 gn.sRm.r]) 1
1–6 (gmsgnr 2 gmrgns)R

The Einstein–Yang–Mills theory with the action given in (48) contains the
inverse-length-scale L cutoff, and the functional x is chosen in such a way
that it is equal to one when the eigenvalues of D2

A /L2 are near zero and equal
to zero as these eigenvalues approach one. This reflects the implicit assump-
tion that for distances smaller than the Planck length or, equivalently, for
energies larger than the Planck energy, the manifold structure of space-time
breaks down and one has to consider a possibly noncommutative algebra
instead of C` (M ) in the first factor of the product algebra (34). So the cutoff
scale L is a regularizer of the theory, while the x removes the nonrenormaliz-
able interactions. Comparing the action with the conventional Euclidean form
for the Einstein–Yang–Mills terms of the Lagrangian, we get
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NL2

48p2 5
1

16pG0
[

1
2k2

0
,

g2
0

48p2 5
1
4

a0 5
23N
80

1
g2

0
, c0 5 2

2
3

a0, d0 5 2
11
3

a0, e0 5
NL4

8p2

SB(D, A) 5 #
M

d 4x !g(x) F 1
2k2

0
R 1 e0 1 a0CmnsrCmnsr 1 c0R;m

;m

1 d011
2

emnrs Rab
mn2 11

2
eablt Rlt

rs2 1
1
4

gms gnr m A1
n s Ai

r2G
(49)

The renormalized Lagrangian, resulting from adding counterterms of the
same form as those in the original action and subsequent rescaling of the
parameters and fields, will contain the physical parameters k, a, c, d, but
will also have the additional term *M d 4 x !g(x) (bR2). This system was
studied in a different context by Fradkin and Tseytlin (1982) and shown to
be renormalizable, while Stelle (1977) showed that it did not satisfy unitarity
due to the presence of tachyons near the Planck length. However, this break-
down is to be expected and provides a justification for the ultimate need of
considering noncommutative algebras.

We have considered this, grantedly, not too realistic model, first, because
it is the simplest based on a noncommutative algebra, second, because it
exhibits in a rather tractable way the details of the construction procedure
outlined at the end of Section 5.1, and third, because it also exhibits the
unifying features of spectral theory and some of its predictive powers, as,
for example, the correct relative signs of the different terms appearing in the
Lagrangian. As a parenthetical remark, note that the action (49) is dominated
by the first term, which is a huge cosmological constant. This could pose
serious objections, but as Landi and Roveli (1996) observed, there are tricks
that one can use to eliminate such a term, for instance, by replacing the
function x by x,

x(u) 5 x(u) 2 ax(bu), a 5 b2, b $ 0, b Þ 1 (50)

Then

f̃0 5 0, f̃2 5 11 2
a
b2 f2, f̃2(k12) 5 (21)k(1 2 abk)x(k)(0), k . 0

(51)

A more realistic case, namely the Einstein–Standard Model System,
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involves adding the different families of quarks and leptons to the above
discussed theory. This in turn involves a much more complicated spectral
triple, and its details are far beyond the space limitations for this presentation.
Thus, for example, the Dirac operator for this theory will be a 45 3 45
matrix (a 36 3 36 matrix for the action on the 36 quarks, plus a 9 3 9
matrix for the action on leptons). We merely point out that the universal
spectral action for the Standard Model coupled to gravitation is encoded in
the formula

TrFx1D2
A

L22G 1 (c, Dc) (52)

where the second term obviously describes the fermion interaction. For a
detailed analysis of the mathematics and physics involved, see the original
papers of Connes and Chamseddine (1996) as well as to the more thorough
(and therefore more tractable in the calculations) papers of Kastler and
coworkers (Carminati et al., 1996; Iochum et al., 1995, 1996). Here I prefer
to devote a few last paragraphs to some of the outstanding problems and
future outlook of spectral geometry as related to the ultimate goal of grand
unification theories.

6. PROBLEMS AND FUTURE OUTLOOK

Below distances of the order of the Planck length, the concept of localiza-
tion loses operational meaning and leads to a uncertainty in the structure of
space-time, which is incorporated in noncommutative geometry (Connes,
1995; Carminati et al., 1996; Doplicher et al., 1995). Below the energy scale
L, we trust the continuum approximation, so noncommutative geometry is
a manifestation of gravity at the small scale. We have shown that gauge
fields appear naturally as inner automorphisms of a unital noncommutative
C*-algebra; so in this context, the small-scale structure of space-time mani-
fests itself also in the physics at energies lower than the Planck mass. The
universal spectral action (52), together with the construction scheme discussed
at the end of Section 5.2, would be the starting point to investigate this
program. A major step forward would be the identification of the algebra !
that would play the role of the gauge group in the noncommutative scenario.
Spectral gravity has been developed so far in the context of Riemannian
compact space-times. Wick rotations and 3 1 1 splitting remain to be under-
stood (Kalau, 1994).

We have used the case of the simplest noncommutative modifications
of a manifold M, given by ! 5 C` (M ) ^ MN(C), to show how the spectral
action leads to a renormalizable (although nonunitary) theory for the Einstein–
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Yang–Mills system. We also pointed out how, by introducing fermionic fields,
this procedure has been applied to model the more realistic case of the
Einstein–Standard Model system. It is interesting to observe that even though
in this formalism the external geometry is still represented by an algebra of
smooth functions in the first factor of the tensor algebra, there are already
some important implications and predictions resulting from the theory. Thus,
in the universal spectral action theory, the Higgs comes for free, and appears
as a gauge field. With the assumption of L . 1015 GeV to fix the parameters
of the Standard Model, the predicted mass of the Higgs scalar particle turns
out to be somewhere within the range 160 , mH , 200 GeV. The spectral
action associated with the Standard Model is consistent with the experimental
data provided one takes L , 1015 GeV [the unification scale for an SU(5)
theory, for instance], and there is a 10% disagreement between the predicted
and the experimental value of sin2uW. Also, the relative signs of the different
terms that appear in the action are the correct ones. However, taking L .
1015 GeV to fix the parameters of the Standard Model implies a very large
value for the Newton constant in the gravity sector (which would require
that L . 1019 GeV). The same problem occurs with string theory!

There are two critical issues that may lie behind the above disagreements.
One has to do with the so called Big Desert issue, which assumes that between
the present experimental range of ,103 GeV and the unification energy
,1015 GeV of the electroweak–strong interactions, there is no new physics.
That is, the Big Desert conjecture presupposes that the Standard Model
remains valid without modification and there are no new particles, in
particular.

The second issue has to do with the assumption that perturbation quantum
field theory, which so far is our only available computational tool, gets
through the Big Desert without collapsing. Are these two tremendous extrapo-
lations from the experimental range sensible? The history of physics and the
radical changes in our conception of nature, particularly those originated at
the beginning of the 20th century, have taught us otherwise.

There is another intriguing idea that has been pursued by Connes, Mos-
covici, and Kreimer (Connes and Moscovici, 1998; Kreimer, 1998; Connes
and Kreimer, 1998; Connes and Kreimer, 1999), and has to do with the fact
that even after the radical changes introduced by quantum mechanics and
general relativity in our picture of space-time, it still has some Kantian
remnants. Perhaps we should think instead that the geometry of space-time
is dictated by quantum field theory. By dualizing Riemannian geometry, we
had ds 5 G1/2 5 .D.21 [(9), (13)]. The inverse of the Dirac operator is the
Feynman bare propagator in quantum field theory, and regularization followed
by renormalization invariably implies a transition from the bare to the dressed
propagator. This, according to Connes and Kreimer (1999), emphasizes the
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fact that space-time ought to be regarded as a derived concepts whose structure
should follow from the properties of quantum field theory.

A remarkable result which appears to give support to the above con-
tention is the observation that two Hopf algebras—one discovered by Connes
and Moscovici (1998) in noncommutative geometry and the other discovered
by Kreimer (Kreimer, 1998; Connes and Kreimer, 1998; Connes and Kreimer,
1999; Wulkenhaar, 1999) in the context of quantum field theory—are related,
and that the antipode of this Hopf algebra reproduces precisely the combinato-
rics of renormalization (see Rosenbaum and Vergara, 2000 for further
discussion).

It is too early to tell to what extent this program of noncommutative
geometry will change our picture of black holes, big bang cosmology, and
the origin of time. But of one thing we can be fairly certain, there are many
“peels of the physics onion” left to be removed before claiming that, as some
of our illustrious predecessors did at the end of the 19th century, there is no
more fundamental physics left to be discovered!
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